Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli.

نویسندگان

  • Jennifer L Robbins-Manke
  • Zoran Z Zdraveski
  • Martin Marinus
  • John M Essigmann
چکیده

DNA adenine methylation by DNA adenine methyltransferase (Dam) in Escherichia coli plays an important role in processes such as DNA replication initiation, gene expression regulation, and mismatch repair. In addition, E. coli strains deficient in Dam are hypersensitive to DNA-damaging agents. We used genome microarrays to compare the transcriptional profiles of E. coli strains deficient in Dam and mismatch repair (dam, dam mutS, and mutS mutants). Our results show that >200 genes are expressed at a higher level in the dam strain, while an additional mutation in mutS suppresses the induction of many of the same genes. We also show by microarray and semiquantitative real-time reverse transcription-PCR that both dam and dam mutS strains show derepression of LexA-regulated SOS genes as well as the up-regulation of other non-SOS genes involved in DNA repair. To correlate the level of SOS induction and the up-regulation of genes involved in recombinational repair with the level of DNA damage, we used neutral single-cell electrophoresis to determine the number of double-strand breaks per cell in each of the strains. We find that dam mutant E. coli strains have a significantly higher level of double-strand breaks than the other strains. We also observe a broad range in the number of double-strand breaks in dam mutant cells, with a minority of cells showing as many as 10 or more double-strand breaks. We propose that the up-regulation of recombinational repair in dam mutants allows for the efficient repair of double-strand breaks whose formation is dependent on functional mismatch repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombination is essential for viability of an Escherichia coli dam (DNA adenine methyltransferase) mutant.

Double mutants of Escherichia coli dam (DNA adenine methyltransferase) strains with ruvA, ruvB, or ruvC could not be constructed, whereas dam derivatives with recD, recF, recJ, and recR were viable. The ruv gene products are required for Holliday junction translocation and resolution of recombination intermediates. A dam recG (Holliday junction translocation) mutant strain was isolated but at a...

متن کامل

Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction.

DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to io...

متن کامل

Mismatch - stimulated killing ( bacteriophage A / heteroduplex DNA / DNA methylation / mlsmatch repair / double - strand break )

DNA duplexes with or without mismatches and with or without adenine-methylated GATC sequences were prepared from separated strands of bacteriophage A DNA and used to transfect Escherichia cofi. Unmethylated heteroduplexes containing one or more repairable mismatches transfect cells with a functioning mismatch repair system less efficiently than they transfect cells deficient in mismatch repair....

متن کامل

The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction.

The Escherichia coli dam adenine-N6 methyltransferase modifies DNA at GATC sequences. It is involved in post-replicative mismatch repair, control of DNA replication and gene regulation. We show that E. coli dam acts as a functional monomer and methylates only one strand of the DNA in each binding event. The preferred way of ternary complex assembly is that the enzyme first binds to DNA and then...

متن کامل

SnapShot: DNA Mismatch Repair

Mismatch Repair in Bacteria and Eukaryotes Mismatch repair in the bacterium Escherichia coli is initiated when a homodimer of MutS binds as an asymmetric clamp to DNA containing a variety of base-base and insertion-deletion mismatches. The MutL homodimer then couples MutS recognition to the signal that distinguishes between the template and nascent DNA strands. In E. coli, the lack of adenine m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 20  شماره 

صفحات  -

تاریخ انتشار 2005